


# **DATA SHEET**

Product Name Current Sense Resistors

Part Name CSR/CSS Series

### Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

| Tel                          | +86 512 5763 1411 / 22 /33                    |  |  |
|------------------------------|-----------------------------------------------|--|--|
| Email marketing@uni-royal.cn |                                               |  |  |
| Manufacture Plant            | Uniroyal Electronics Industry Co., Ltd.       |  |  |
|                              | Aeon Technology Corporation                   |  |  |
|                              | Royal Electronic Factory (Thailand) Co., Ltd. |  |  |
|                              | Royal Technology (Thailand) Co., Ltd.         |  |  |





### 1. Scope

- 1.1 This datasheet is the characteristics of Current Sense Resistors manufactured by UNI-ROYAL.
- 1.2 Made by Cu/Ni or Mn/Cu Alloy resistance wire materials
- 1.3 Excellent Solderability
- 1.4 Suitable for all kinds of Current sense application
- 1.5 Application: Power Supply

### 2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 Current Sense Resistors the 1<sup>st</sup> to 3<sup>rd</sup> digits are to indicate the product type and 4th digit is the special feature.

Example:

CSRA= CSRA type

2.2  $5^{th} \sim 6^{th}$  digits:

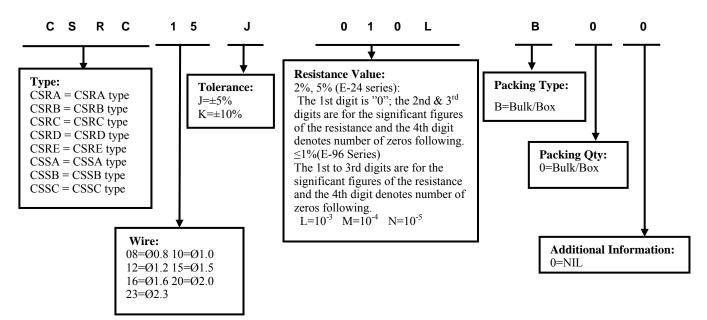
For Current Sense Resistors, The 5<sup>th</sup> & 6<sup>th</sup> digits will be indicated with "Lead diameter"

Example: 1.0mm= 10

- 2.3 The 7<sup>th</sup> digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.  $J=\pm 5\%$   $K=\pm 10\%$
- 2.4 The 8<sup>th</sup> to 11<sup>th</sup> digits is to denote the Resistance Value.
- 2.4.1 For the standard resistance values of E-24 series, the 8th digit is "0", the 9<sup>th</sup> & 10<sup>th</sup> digits are to denote the significant figures of the resistance and the 11<sup>th</sup> digit is the zeros following;

For the standard resistance values of E-96 series, the 8<sup>th</sup> digit to the 10<sup>th</sup> digits is to denote the significant figures of the resistance and the 11th digit is the zeros following.

2.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11<sup>th</sup> digit:


 $0=10^{0} 1=10^{1} 2=10^{2} 3=10^{3} 4=10^{4} 5=10^{5} 6=10^{6} J=10^{-1} K=10^{-2} L=10^{-3} M=10^{-4} N=10^{-5} P=10^{-6} 2.4.3 The 12^{th}, 13^{th} \& 14^{th} digits.$ 

The 12<sup>th</sup> digit is to denote the Packaging Type with the following codes:

- B=Bulk /Box 2.4.4 Current Sense Resistors, The 13<sup>th</sup> digit should be filled with "0"
- 2.4.5 Current Sense Resistors, The 14<sup>th</sup> digit should be filled with "0"

### 3. Ordering Procedure

(Example: CSRC  $\emptyset$ 1.5 ±5% 10m  $\Omega$  B/B )





Туре

CSRA

CSRB

CSRC

CSRD

CSRE

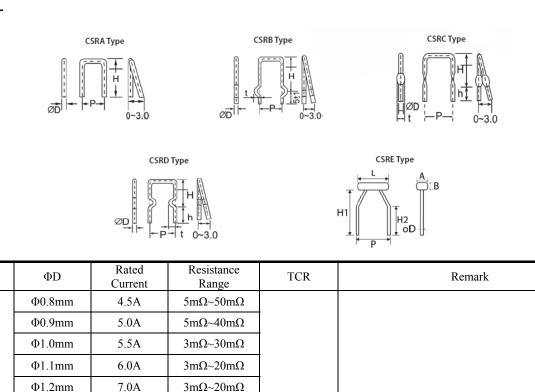
Φ1.3mm

Φ1.4mm

Φ1.5mm

Φ1.6mm

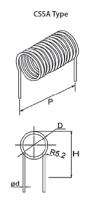
Φ1.8mm


Φ2.0mm

Φ2.3mm

Φ1.0mm




## 4. <u>Specification</u> 4.1 CSR-Type



±100PPM/°C

| *P&H could be design by customer's requirement |
|------------------------------------------------|
| *Temperature coefficient of resistor could be  |
| design by customer's requirement               |
| design by easterner's requirement              |

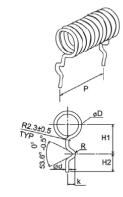
### 4.2 CSS-Type



7.5A

8.0A

9.0A


9.5A

11A

12A

14A

50A



CSSB Type

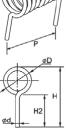
 $3m\Omega \sim 20m\Omega$ 

 $3m\Omega \sim 20m\Omega$ 

 $3m\Omega \sim 20m\Omega$ 

 $3m\Omega \sim 15m\Omega$ 

 $3m\Omega \sim 10m\Omega$ 


 $3m\Omega \sim 10m\Omega$ 

 $3m\Omega \sim 7m\Omega$ 

 $1 \mathrm{m} \Omega$ 



CSSC Type



| Туре         | ΦD     | Rated Current | Resistance Range          | Remark                                         |
|--------------|--------|---------------|---------------------------|------------------------------------------------|
|              | Φ0.8mm | 4.5A          | $5m\Omega \sim 50m\Omega$ |                                                |
| CSSA<br>CSSB | Φ1.0mm | 5.5A          | $3m\Omega \sim 30m\Omega$ | *P&H could be design by customer's requirement |
| CSSC         | Φ1.6mm | 9.5A          | $3m\Omega \sim 15m\Omega$ | Part could be design by customer's requirement |
|              | Φ2.0mm | 12A           | $3m\Omega \sim 10m\Omega$ |                                                |





### 5. Performance Specification

| Characteristic                                                                                          | Limits                                                                               | Test Method<br>(GB/T 5729&JIS-C-5201&IEC60115-1)                                                                                                                                                                                                                                                                                                                                                           |  |  |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Temperature<br>Coefficient                                                                              | ±100PPM/°C                                                                           | 4.8 Natural resistance changes per temp. Degree centigrade<br>$\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 (PPM/^{\circ}C)$ R_1: Resistance Value at room temperature (t_1);<br>R_2: Resistance at test temperature<br>(Upper limit temperature or Lower limit temperature)<br>t_1: +25^{\circ}C or specified room temperature<br>t_2: Upper limit temperature or Lower limit temperature test<br>temperature |  |  |
| Solderablity                                                                                            | Surface area must be covered with new solder 95%.                                    | 4.17 dipping specimen with flux into 245±3°C solider for 2~3 sec                                                                                                                                                                                                                                                                                                                                           |  |  |
| Resistance to soldering heat                                                                            | 1.No mechanical damage<br>2.ΔR/R: ≤±2%                                               | 4.18 Dipping into 260±5°C solder for 10±1 sec measure after 1hr recover time                                                                                                                                                                                                                                                                                                                               |  |  |
| Rapid change of temperature                                                                             | Resistance change rate must be in $\pm(1\%+0.05\Omega)$ , and no mechanical damage.  | 4.19 30 min at -55 °C and 30 min at 155°C; 100 cycles.                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Humidity<br>(steady state)                                                                              | Resistance change rate must be in $\pm (2\%+0.05\Omega)$                             | 4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at $40\pm2$ °C and $90\sim95$ % relative humidity                                                                                                                                                                                                                                                          |  |  |
| Load lifeResistance change rate must be inin humidity $\pm(5\%+0.05\Omega)$ , and no mechanical damage. |                                                                                      | 7.9 Resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON",0.5 hour "OFF" in a humidity test chamber controlled at $40^{\circ}C \pm 2^{\circ}C$ and 90 to 95% relative humidity.                                                                                                                                                                                          |  |  |
| Load life                                                                                               | Resistance change rate must be in $\pm (5\%+0.05\Omega)$ , and no mechanical damage. | 4.25.1 Permanent resistance change after 1,000 hours operating at RCWV with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at 70°C $\pm$ 2°C ambient.                                                                                                                                                                                                                                                        |  |  |

### 6. <u>Note</u>

6.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75%RH.

Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

- 6.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 6.3. Storage conditions as below are inappropriate:
  - a. Stored in high electrostatic environment
  - b. Stored in direct sunshine, rain, snow or condensation.
  - c. Exposed to sea wind or corrosive gases, such as Cl<sub>2</sub>, H<sub>2</sub>S, NH<sub>3</sub>, SO<sub>2</sub>, NO<sub>2</sub>, etc.

### 7. <u>Record</u>

| Version | Description   | Page | Date         | Amended by  | Checked by |
|---------|---------------|------|--------------|-------------|------------|
| 1       | First version | 1~4  | Apr.12, 2019 | Chen Haiyan | Xu Yuhua   |

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice