

DATA SHEET

Product Name Chip Resistors Shunt

Part Name RS12/RS20/RS30 Series

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33
Email	marketing@uni-royal.cn
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.
	Aeon Technology Corporation
	Royal Electronic Factory (Thailand) Co., Ltd.
	Royal Technology (Thailand) Co., Ltd.

1. <u>Scope</u>

- 1.1 This data sheet is the characteristics of Chip Resistors Shunt manufactured by UNI-ROYAL.
- 1.2 The resistor is manufactured by highly quality-controlled process and guaranteed high reliability, it meets RoHS & Halogen-Free requirement.
- 1.3 Current sensor for power hybrid applications
- 1.4 Frequency converters
- 1.5 Power modules
- 1.6 Communication system
- 1.7 Automatic control power supply
- 1.8 High current applications for the automotive market
- 1.9 AEC-Q200 qualified

2. Part No. System

Part No. includes 14 codes shown as below:

2.1 1st~4th codes: Part name. E.g.: RS12,RS20,RS30

2.2 5th~6th codes: Power rating.

E.g.: W=Normal	Size	"1~	-G" = "1~1	6"						
Wattage	1/32	3/4	1/2	1/3	1/4	1/8	1/10	1/16	1/20	1
Normal Size	WH	07	W2	W3	W4	W8	WA	WG	WM	1W

If power rating is equal or lower than 1 watt, 5th code would be "W" and 6th code would be a number or letter.

	E.g.: WA=1/10W	W4=1/4W			
2.3	7 th code: Tolerance. E.g.: D=±0.5%	F=±1%	$G=\pm 2\%$	$J=\pm5\%$	K= ±10%

2.4 8th~11th codes: Resistance Value.

2.4.1 If value belongs to standard value of E-24 series, the 8^{th} code is zero, $9^{th} \sim 10^{th}$ codes are the significant figures of resistance value, and the 11^{th} code is the power of ten.

B=2500 pcs C=10,000pcs D=20,000pcs

E=15,000pcs

2.4.2 If value belongs to standard value of E-96 series, the $8^{th} \sim 10^{th}$ codes are the significant figures of resistance value, and the 11^{th} code is the power of ten.

2.4.3 11th codes listed as following:

 $0 = 10^{0} \quad 1 = 10^{1} \quad 2 = 10^{2} \quad 3 = 10^{3} \quad 4 = 10^{4} \quad 5 = 10^{5} \quad 6 = 10^{6} \quad J = 10^{-1} \quad K = 10^{-2} \quad L = 10^{-3} \quad M = 10^{-4} \quad M = 10^{-4} \quad L = 10^{-3} \quad M = 10^{-4} \quad M = 10^$

 $2.5 \quad 12^{th} \sim 14^{th} \text{ codes.}$

2.5.1 12^{th} code: Packaging Type. E.g.: B = Bulk / Box T=Tape/Reel

2.5.2 13th code: Standard Packing Quantity.

4=4,000pcs 5=5,000pcs Chip Product: BD=B/B-20000pcs

cs TC=T/R-10000pcs

 $2.5.3 \ 14^{th}$ code: Special features.

E = Environmental Protection, Lead Free, or Standard type.

3. Ordering Procedure

4. Marking

When the resistance value is lower than 1 ohm, the first digit of marking will be symbolized as"R" which represent as a decimal point.

eg: R0003 1% $\rightarrow 0.3 \text{m} \Omega$ 1%

5. <u>Dimension (Unit: mm)</u>

Туре	W	А	С	Н
RS12	6.3±0.2	1.2 ± 0.2	3.1 ± 0.3	0.5 ± 0.1
RS20	10±0.2	2.2 ± 0.2	5.1 ± 0.4	0.5 ± 0.1
RS30	15 ± 0.3	4.2 ± 0.3	7.6 ± 0.4	0.5 ± 0.1

Туре	Resistance	D1	D2	Material
	0.2	1.40	1.40	CuMn7Sn
	0.2	1.40	1.40	Culvin/Sil
RS12	0.5	1.30	1.30	
	0.5	0.88	0.88	Manganın
	2	0.50	0.50	
	2	0.03	0.03	
	3	0.43	0.45	Kamar
	2	0.3	0.3	
	2	0.7	0.7	
	3	0.47	0.47	FeCrAl
		0.35	0.35	-
	5	0.28	0.28	C-M-78-
	0.2	1.29	1.29	Culvin/Sn
	0.2	1.00	1.00	
	0.3	1.37	1.37	Manganin
	0.5	0.83	0.83	
	1	0.40	0.40	
	1	1.16	1.16	
RS20	2	0.56	0.56	Kama
	3	0.37	0.37	
	4	0.28	0.28	
	1	1.28	1.28	-
	2	0.64	0.64	FaCrAl
	3	0.43	0.43	Iteciai
	4	0.32	0.32	
	0.1	2.0	2.0	CuMn7Sn
	0.2	1.50	1.50	-
	0.4	0.75	0.75	Mongonin
	0.5	0.60	0.60	Manganin
	0.75	0.41	0.41	
RS30	1	0.86	0.86	
	2	0.40	0.40	Kamar
	3	0.29	0.29	
	1	0.96	0.96	
	2	0.48	0.48	FeCrAl
	3	0.32	0.32	

6. <u>Range</u>

Туре	Power	Tolerance	Resistance Range	Operating Temperature
RS12	3W~6W		$0.2 \text{ m} \Omega \sim 5 \text{m} \Omega$	
RS20	5W~9W	$\pm 1\%$, $\pm 2\%$, $\pm 5\%$	0.2 m Ω ~4m Ω	-55℃~170℃
RS30	7W~15W		0.1 m Ω ~3 m Ω	

7. Derating Curve

8. TCR Derating

9. <u>Recommended Solder Pad Layout</u>(Unit: mm)

Туре	L	W	a
RS12	7	3.4	1.8
RS20	11	6.2	2.7
RS30	16	8.75	5.2

10. Performance Specification

Iterms	Reference	Limits	Additional Requirements
Temperature Cycling	JESD22 Method JA-104	±0.5%	1000 Cycles(-55°C to+125°C) Measurement at 24±2hours after test conclusion
Short Time Overload	MIL-STD-202 Method 301	±0.5%	5 times rated power for 5 s Measurement at 24±2hours after test conclusion
High Temperature Exposure	MIL-STD-202 Method 108	±0.5%	1000hrs.@T=125°C.Unpowered. Measurement at 24±2hours after test conclusion
Biased Humidity	MIL-STD-202 Method 103	±0.5%	1000hrs 85°C/85%RH ° Note: Specified conditions: 10% of operating power. Measurement at 24±2hours after test conclusion
Operational Life	MIL-STD-202 Method 108	±0.5%	Condition D Steady State TA=125°C at rated power. Measurement at 24±2hours after test conclusion
Solderability	J-STD-002C	95% Coverage Min	245°C±5°C,5s+0.5s/-0
Vibration	MIL-STD-202 Method 204	±0.5%	5 g's for 20 min, 12 cycles each of 3 orientations. Note: Use 8"X5" PCB .031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10-2000 Hz. Measurement at 24±2hours after test conclusion
Resistance to Soldering Heat	MIL-STD-202 Method 210	±0.5%	$260^{\circ}C \pm 5^{\circ}C + 10s \pm 1s$ Measurement at 24±2hours after test conclusion

11. <u>Packing</u>

										Unit:	mm
Туре	А	В	W	Е	F	P0	P1	P2	D0	Т	Quantity (EA)
RS12	4.3	7.6	16	1.55	7.5	4	7.7	7.7	1.50	1.7	1000
RS20	6	11	24	1.55	11.2	4	12	12	1.50	2.0	2500
RS30	8.6	16	24	1.55	10.8	4	12	12	1.50	2.4	2000

12. <u>Note</u>

12.1. UNI-ROYAL recommend the storage condition temperature: $20 \pm 2^{\circ}$ C, humidity :65 ± 5%.

(Put condition for individual product). Even under UNI-ROYAL recommended storage condition, solderability of products over 1 year old. (Put condition for each product) may be degraded.

12.2. Store / transport cartons in the correct direction, which is indicated on a carton as a symbol.

Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.

- 12.3. Product performance and soldered connections may deteriorate if the products are stored in the following places:
 - a. Storage in high Electrostatic.
 - b. Storage in direct sunshine $\$ rain and snow or condensation.
 - c. Where the products are exposed to sea winds or corrosive gases, including Cl_2 , H_2S_3 NH_3 , SO_2 , NO_2 .

13. Record

version De	escription	Page	Date	Amended by	Checked by
1 Fii	rst version	1~6	Apr.20,2020	Song Nie	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice.